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1. Background and purpose 

The unstable balance in secretions of lipids and aqueous fluid to tear film is a 
significant cause of dry eye disease (DED).1,2 Arita et al. demonstrated a simple but 
very eff ective method that classifies dry eye types to the aqueous deficient dry eye 
(ADDE) and the evaporative dry eye (EDE) by focusing on the dry eye type-unique 
appearances of interference fringe colors and patterns of tear films.3 We thought 
this simple classification is very helpful for diagnoses and treatments. However, 
diagnostic bias by unskilled observers remains an issue to be solved.3

The artificial intelligence (AI)-based support for diagnosis is one of the hottest 
topics in the field of ophthalmology research. We expected that the AI-based 
model would reduce bias in DED-type diagnoses. Many studies have been reported 
targeting retinal diseases like age-related macular degeneration and/or diabetic 
retinopathy. Most of the works established AI-based predicting models using 
images taken by fundus cameras and/or optical coherence tomography (OCT) 
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devices to capture disease-related structural disorders.4-7 In contrast, the interfer-
ence fringes dynamically change the colors and patterns spatiotemporally. To the 
best of our knowledge, there is no AI-based model studied for distinguishing ADDE 
and EDE using interference fringe images. However, an AI-based study classifying 
the condition of the tear lipid layer by analyzing the textures of interference fringes 
compared to the device-unique grades has been reported.8 This suggested the 
possibility of using the unstructured characteristics, such as colors and/or complex-
ities of interference fringes, as the numerical image features when building AI-based 
prediction models. In this study, we first examined several types of image charac-
teristics extracted from the colors and patterns of fringes to obtain effective image 
features for the DED-type classification. We then evaluated whether the AI-based 
models would have sufficient abilities for this type of prediction by comparing their 
diagnoses with those made by an ophthalmologist skilled in this classification (the 
founder of this type classification).3

2. Methods 

The interference fringe of tear film is generated by the phase difference between 
reflected lights from the surface of the lipid layer and the border formed between 
lipid and water layers (Fig. 1). It seems the colors and appearances of interference 
fringes are primarily determined only by the lipid conditions; however, we consider 
that the balance of secreted amounts of lipid and water component in tear film is 
key to keep the appearance of the interference fringe at normal type. Therefore, 
the interference fringe would show a colorful and complex appearance (ADDE 
type) when the balance is off due to conditions such as excess secretion of the lipid 
component and/or shortage of the water component, since the excess amount of 
lipid might be pooled at the lower side of the corneal surface due to the shortage 
in upward movement of the tear film. The pooled lipids would induce an uneven 
thickness of lipid layer, and this could cause the colorful and complex appearance 
of the interference fringe.

Interference fringe images were taken with the Kowa DR-1α tear interferometer 
(Kowa Company Ltd., Tokyo, Japan) at 5 seconds after blinking (Fig. 1A and B). We 
used these fringe images to build the linear support vector machine (SVM)-based 
machine learning (ML) models. We converted the unstructured properties (charac-
teristics), such as fringe colors, color saturations, color diversities, and/or textures 
of fringes, to numerical values through several image processing techniques. These 
numerical values were normalized to range from 0 to 1 to define the image features 
used for this study. Examining image characteristics in a multifaceted manner, we 
finally chose a minimum necessary of 11 image features to build the models. A 
detailed definition of each image feature is shown in Table 1 and examples explaining 
how to extract the numerical values from interference fringe images are shown in 
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Fig. 1A. Typical interference fringe color images captured by the Kowa DR-1α. (A) Interference 
fringes are generated on the surface of tear film under special illumination of the device. The 
colors of the fringes represent the thickness of the lipid layer, which covers the water layer of 
tear film. (B) Interference fringe images show dry-eye-specific colors and appearances. (C) 
Eleven image features (IFs) optimized to classify three dry-eye types were prepared by using 
several image processing techniques. IFs can be divided to three categories by the functions: 
1. IFs represent color properties of IFCIs (IF1 ~ IF6); 2. IFs show the existences of breakup of 
tear film (IF8 and IF9); and 3. IFs show the size and location of interference fringes (IF7, IF10, 
and IF11).
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Figure 1C and Figure 2A. Image features were averages and/or standard deviations 
and/or region of interest (ROI) areas calculated from pixel values of color channels, 
and can be largely sorted into three classes: 

1. class-1 represents color properties of interference fringes obtained as 
averaged pixel values of color channels (including IF1, IF3, and IF5); 

2. class-2 indicates complexities of fringe appearance and/or colors determined 
by the variations of pixel colors for complexities of whole cornea areas or 
local cornea area (including IF2, IF4, IF6, IF8, and IF9); and 

3. class-3 shows localizing areas of fringes and breakups of tear film in the 
corneal surface (including IF7, IF10, and IF11).

We collected 138 images (46 images were contained in each type) to build ML models. 
The models were trained using training images (including 31 randomly chosen 
images from each type, for a total of 93 images) and type predictions were examined 
using 45 residual images containing 15 images for each type, with averaged values 
and standard deviations calculated from 10-time-running using randomly chosen 
data from the data set. DED types predicted by the ML models were compared to 
ones diagnosed by a skilled ophthalmologist to obtain F-scores and Kappa coeffi-
cients. We also ranked image features by the significance in efficacies of type classi-
fication from the F-scores under independent use.

Table 1. Definitions of image features

ID Name Definitions of image features

IF1 RedAVG Averaged pixel value of red channel of target area

IF2 RedSD Standard deviation of red channel of target area

IF3 BlueAVG Averaged pixel value of blue channel of target area

IF4 BlueSD Standard deviation of blue channel of target area

IF5 SatAVG Averaged pixel value of saturation of target area

IF6 SatSD Standard deviation of saturation of target area

IF7 (SatHI)0.5 Square root of pixel number where saturation shows high level

IF8 LCIRED Local complexity of pixel value of red channel of SD image

IF9 LCIBLUE Local complexity of pixel value of blue channel of SD image

IF10 ICRHI Averaged pixel value of upper area of inter-channel ratio (R/B) image

IF11 ICRLO Averaged pixel value of lower area of inter-channel ratio (R/B) image
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3. Results 

First, we examined the ability of every single image feature to predict DED type. As 
shown in Figure 2B, the image feature defined as BlueSD(IF4) had the lowest con-
tribution for normal-type prediction, while ICRLO(IF11) had the highest contribu-
tion. Likewise, the lowest and highest image features for ADDE-type prediction 
were ICRHI(IF10) and (SatHI)0.5 (IF7), respectively, while LCIRED(IF8) and RedSD(IF2) had 
the lowest and highest features for EDE-type prediction, respectively. Distance 
of prediction from diagnosis (DP), indicating combined error in the predicting 
performance of each image feature (lower value had lower error), was given by each 
F-score value (FSNORMAL, FSADDE, and FSEDE) as below:

 DP =   
 (1 −  FS  NORMAL  )  +  (1 − FS  ADDE  )  +  (1 −  FS  EDE  ) 

   ______________________  3         (1)

Fig 2. Definition and ability in independent use of each image feature. (A) An example of 
image processing to extract image features (IF1 – IF4) from the split channels of interference 
fringe image.  Averaged pixel values (IF1: RedAVG and IF3: BlueAVG) and standard deviation 
values (IF2: RedSD and IF4: BlueSD) were calculated by only targeting the areas of interference 
fringe limited by thresholding values applied to pixel brightness. (B) Ability of each image 
feature to classify DED types under individual use. The abilities were indicated as F-scores 
and colored as heat map (blue for lower and red for higher values). Image features were 
ranked by the integrated ability of DED-type prediction (defined by Equation 1 as shown 
in Results section). (C) DED-type dependent trends were visualized by image feature values 
shown as heat map.  
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DP values showed that SatSD(IF6) was the most significant image feature for 
type-predicting ability, while LCIRED(IF8) was the least significant one. We found 
DED-type-specific trends in image feature values when using the five most significant 
image features determined by the DP values (IF6, IF7, IF2, IF5, and IF11 ranked under 
independent use, Fig. 2C). Normal type showed very low image feature values in 
almost all interference fringe images except IF2. ADDE type very clearly indicated 
very high values in all image features and EDE type showed moderate image feature 
values except for IF2, which showed very low values. In general, normal-type images 
tended to show clear fringe patterns with very lower color saturations; ADDE-type 
images showed complicated fringes containing many colors with higher saturations. 
In contrast, EDE-type images had a uniform and slightly colored surface with no 
fringes just aft er blinking. In many cases of ADDE and EDE patients, fringe images 
were accompanied by breakups of tear film. In the areas where tear film broke up, 
local roughness increased as a complicated texture (IF8 and IF9). These trends 
seemed to be the strong driving forces that would bring accurate type prediction 
by our ML models. 

Next, we determined the minimum number of image features necessary to create 
accurate ML models (Fig. 3A). All three types (normal, ADDE, and EDE) showed an 
increase in accuracy rates depending on the number of image features added to the 
models; the accuracy rate curves were followed by plateaus at nine image features. 
In addition, predictions using all 11 image features showed higher accuracy rates 
than ones assessed by the most significant 5 image features (Fig. 3B). This indicated 
that 11 was the suff icient minimum necessary number of image features for this 
case. 

Our ML model built using 11 image features showed eff ectively high F-scores 
(normal, 0.845 ± 0.067; ADDE, 0.981 ± 0.023; EDE, 0.815 ± 0.095) and high inter-rater 
agreement value (kappa coeff icient = 0.820) with the predetermined DED-types 

Fig 3. Accuracy rates of our ML model to predict DED type. (A) Dependencies of accuracy rate 
of DED-type prediction on the increase in applied number of image features. Image features 
were added to the queue with an order of [IF1, IF3, IF5, IF7, IF8, IF10, IF2, IF4, IF6, IF9, IF11]. 
(B) Diff erent eff icacies observed under the diff erent sets of the five selected image features 
chosen by the rank in the ability of prediction (determined in Fig 2B). (C) Accuracy rates of 
DED-type prediction evaluated by our ML model using 11 image features. (D) Accuracy rates 
of DED-type prediction evaluated by orthodox ML model (bag of visual words) using 64 auto-
matically determined image features.
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diagnosed by the skilled ophthalmologist, whereas the orthodox method using “bag 
of visual words” technique (we used 64 automatically determined image features 
by the algorithm to predict the types) showed very low F-scores (normal, 0.587 ± 
0.146; ADDE, 0.669 ± 0.073; EDE, 0.549 ± 0.088) and agreement (kappa coefficient 
= 0.367). These results strongly indicate that the ML model built with a small but 
highly capable number of image features generated through minute investigation 
is able to bring effective diagnostic support, even though the image features have 
been created from non-structural image characteristics.

4. Conclusions and future perspectives

In this study, we originally developed a ML-based predictive model for DED diagnosis. 
In a previous study, it was reported that inter-rater agreement showed wide variation 
between observers in a range from 0.57 to 0.94.3 Even though we were not able to 
examine the same data set used in the report, our ML model demonstrated almost 
perfect inter-rater agreement with those diagnosed by the skilled ophthalmolo-
gist. The results indicate that our predictive model would help reduce diagnostic 
biases by providing observers with additional accurate diagnostic support, which 
is one of main purposes of this work. Nevertheless, accuracy rates for normal- and 
EDE-type predictions are lower than the accuracy rate for ADDE. We believe this is 
caused by the lower distinction between normal and EDE types, since they showed 
similar appearances in fringe colors. Our next step will be to further examine other 
image features that may enhance model performance in distinguishing between 
normal and EDE types, hence confirming the ability of this model through clinical 
evaluations using images collected from many more patients.
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