Artificial intelligence and glaucoma progression
MAIO 123 PDF

Categories

How to Cite

1.
Abe RY, Medeiros FA, Costa VP. Artificial intelligence and glaucoma progression. MAIO [Internet]. 2022 Dec. 20 [cited 2024 Nov. 21];4(1). Available from: https://www.maio-journal.com/index.php/MAIO/article/view/123

Copyright notice

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Ricardo Yuji Abe, Felipe Medeiros, Vital Paulino Costa

Keywords

artificial intelligence; glaucoma progression; optical coherence tomography; retinography; visual field

Abstract

Detection of progression in glaucoma is crucial to avoid visual impairment and blindness. Throughout the clinical course of the disease, glaucoma patients can present very different trajectories, as some patients may remain stable using single eye drops whereas other patients may require surgical procedures to control the disease. Thus, the decision of intensifying a treatment by adding new eye drops or performing a glaucoma surgery need to rely on precise data of true progression of
the disease. In addition, assessing the velocity of progression can help to identify rapid progressors that are more prone to develop functional impairment. In clinical practice, we use both structural (retinography and optical coherence tomography) and functional (visual field) measurements, along with clinic-demographical data to evaluate if the patient is progressing. However, in some patients the correlation between structural and functional exams makes the detection of progression a challenge. Currently we are facing a growing use of artificial intelligence in medicine with the application of complex algorithms such as deep learning models. In this review, we summarize the findings from recent studies that investigated the use of artificial intelligence in detecting glaucoma progression.

https://doi.org/10.35119/maio.v4i1.123
MAIO 123 PDF

References

Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. Nov 2014;121(11):2081-90. https://doi.org/10.1016/j.ophtha.2014.05.013

Spaeth G, Walt J, Keener J. Evaluation of quality of life for patients with glaucoma. Am J Ophthalmol. Jan 2006;141(1 Suppl):S3-14. https://doi.org/10.1016/j.ajo.2005.07.075

Medeiros FA, Gracitelli CP, Boer ER, Weinreb RN, Zangwill LM, Rosen PN. Longitudinal changes in quality of life and rates of progressive visual field loss in glaucoma patients. Ophthalmology. Feb 2015;122(2):293-301. https://doi.org/10.1016/j.ophtha.2014.08.014

Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. May 2014;311(18):1901-11. https://doi.org/10.1001/jama.2014.3192

Artes PH, O’Leary N, Nicolela MT, Chauhan BC, Crabb DP. Visual Field Progression in Glaucoma: What Is the Specificity of the Guided Progression Analysis? Ophthalmology. May 2014. https://doi.org/10.1016/j.ophtha.2014.04.015

Abe RY, Gracitelli CP, Medeiros FA. The Use of Spectral-Domain Optical Coherence Tomography to Detect Glaucoma Progression. Open Ophthalmol J. 2015;9:78-88. https://doi.org/10.2174/1874364101509010078

Urata CN, Mariottoni EB, Jammal AA, et al. Comparison of Short- And Long-Term Variability in Standard Perimetry and Spectral Domain Optical Coherence Tomography in Glaucoma. Am J Ophthalmol. Feb 2020;210:19-25. https://doi.org/10.1016/j.ajo.2019.10.034

Goldbaum MH, Sample PA, White H, et al. Interpretation of automated perimetry for glaucoma by neural network. Invest Ophthalmol Vis Sci. Aug 1994;35(9):3362-73.

Spenceley SE, Henson DB, Bull DR. Visual field analysis using artificial neural networks. Ophthalmic Physiol Opt. Jul 1994;14(3):239-48 https://doi.org/10.1111/j.1475-1313.1994.tb00004.x

Liu X, Cheng G, Wu JX. Identifying the measurement noise in glaucomatous testing: an artificial neural network approach. Artif Intell Med. Oct 1994;6(5):401-16. https://doi.org/10.1016/0933-3657(94)90004-3

Brigatti L, Nouri-Mahdavi K, Weitzman M, Caprioli J. Automatic detection of glaucomatous visual field progression with neural networks. Arch Ophthalmol. Jun 1997;115(6):725-8. https://doi.org/10.1001/archopht.1997.01100150727005

Thompson AC, Jammal AA, Medeiros FA. A Review of Deep Learning for Screening, Diagnosis, and Detection of Glaucoma Progression. Transl Vis Sci Technol. 2020;9(2):42-42. https://doi.org/10.1167/tvst.9.2.42

Goldbaum MH, Lee I, Jang G, et al. Progression of patterns (POP): a machine classifier algorithm to identify glaucoma progression in visual fields. Invest Ophthalmol Vis Sci. 2012;53(10):6557-6567. https://doi.org/10.1167/iovs.11-8363

Yousefi S, Goldbaum MH, Balasubramanian M, et al. Glaucoma progression detection using structural retinal nerve fiber layer measurements and functional visual field points. IEEE Trans Biomed Eng. Apr 2014;61(4):1143-54. https://doi.org/10.1109/tbme.2013.2295605

Yousefi S, Goldbaum MH, Balasubramanian M, et al. Learning from data: recognizing glaucomatous defect patterns and detecting progression from visual field measurements. IEEE Trans Biomed Eng. Jul 2014;61(7):2112-24. https://doi.org/10.1109/tbme.2014.2314714

Yousefi S, Goldbaum MH, Varnousfaderani ES, et al. Detecting glaucomatous change in visual fields: Analysis with an optimization framework. J Biomed Inform. 2015;58:96-103. https://doi.org/10.1016/j.jbi.2015.09.019

Yousefi S, Kiwaki T, Zheng Y, et al. Detection of Longitudinal Visual Field Progression in Glaucoma Using Machine Learning. Am J Ophthalmol. Sep 2018;193:71-79. https://doi.org/10.1016/j.ajo.2018.06.007

Lee J, Kim YK, Jeoung JW, Ha A, Kim YW, Park KH. Machine learning classifiers-based prediction of normal-tension glaucoma progression in young myopic patients. Jpn J Ophthalmol. Jan 2020;64(1):68-76. https://doi.org/10.1007/s10384-019-00706-2

Medeiros FA, Jammal AA, Thompson AC. From Machine to Machine: An OCT-Trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs. Ophthalmology. Apr 2019;126(4):513-521. https://doi.org/10.1016/j.ophtha.2018.12.033

Thompson AC, Jammal AA, Medeiros FA. A Deep Learning Algorithm to Quantify Neuroretinal Rim Loss From Optic Disc Photographs. Am J Ophthalmol. May 2019;201:9-18. https://doi.org/10.1016/j.ajo.2019.01.011

Medeiros FA, Jammal AA, Mariottoni EB. Detection of Progressive Glaucomatous Optic Nerve Damage on Fundus Photographs with Deep Learning. Ophthalmology. 2021;128(3):383-392. https://doi.org/10.1016/j.ophtha.2020.07.045

Yousefi S, Elze T, Pasquale LR, et al. Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence-Enabled Dashboard. Ophthalmology. Sep 2020;127(9):1170-1178. https://doi.org/10.1016/j.ophtha.2020.03.008

Cordeiro MF, Normando EM, Cardoso MJ, et al. Real-time imaging of single neuronal cell apoptosis in patients with glaucoma. Brain. Jun 1 2017;140(6):1757-1767. https://doi.org/10.1093/brain/awx088

Cordeiro MF, Hill D, Patel R, Corazza P, Maddison J, Younis S. Detecting retinal cell stress and apoptosis with DARC: Progression from lab to clinic. Prog Retin Eye Res. Jan 2022;86:100976. https://doi.org/10.1016/j.preteyeres.2021.100976

Nouri-Mahdavi K, Mohammadzadeh V, Rabiolo A, Edalati K, Caprioli J, Yousefi S. Prediction of Visual Field Progression from OCT Structural Measures in Moderate to Advanced Glaucoma. Am J Ophthalmol. Jun 2021;226:172-181. https://doi.org/10.1016/j.ajo.2021.01.023

Abe RY, Diniz-Filho A, Costa VP, Gracitelli CP, Baig S, Medeiros FA. The Impact of Location of Progressive Visual Field Loss on Longitudinal Changes in Quality of Life of Patients with Glaucoma. Ophthalmology. Mar 2016;123(3):552-7. https://doi.org/10.1016/j.ophtha.2015.10.046

Hood DC, Xin D, Wang D, et al. A Region-of-Interest Approach for Detecting Progression of Glaucomatous Damage With Optical Coherence Tomography. JAMA Ophthalmol. 2015;133(12):1438-1444. https://doi.org/10.1001/jamaophthalmol.2015.3871

Bowd C, Belghith A, Christopher M, et al. Individualized Glaucoma Change Detection Using Deep Learning Auto Encoder-Based Regions of Interest. Transl Vis Sci Technol. Jul 1 2021;10(8):19. https://doi.org/10.1167/tvst.10.8.19

Shuldiner SR, Boland MV, Ramulu PY, et al. Predicting eyes at risk for rapid glaucoma progression based on an initial visual field test using machine learning. PLoS One. 2021;16(4):e0249856. https://doi.org/10.1371/journal.pone.0249856

Saeedi O, Boland MV, D’Acunto L, et al. Development and Comparison of Machine Learning Algorithms to Determine Visual Field Progression. Transl Vis Sci Technol. Jun 1 2021;10(7):27. https://doi.org/10.1167/tvst.10.7.27

Dixit A, Yohannan J, Boland MV. Assessing Glaucoma Progression Using Machine Learning Trained on Longitudinal Visual Field and Clinical Data. Ophthalmology. Jul 2021;128(7):1016-1026. https://doi.org/10.1016/j.ophtha.2020.12.020

Ittoop SM, Jaccard N, Lanouette G, Kahook MY. The Role of Artificial Intelligence in the Diagnosis and Management of Glaucoma. J Glaucoma. Dec 21 2021. https://doi.org/10.1097/ijg.0000000000001972

MAIO 123 PDF