Keywords
References
Sala L, Prudhomme C, Prada D, Salerni F, Trophime C, Chabannes V, et al. Patient-specific virtual simulator of tissue perfusion in the lamina cribrosa.PosterboardNumber727 - B0474.ARVO AnnualMeeting,
Baltimore, MD, 2017.
Sacco R, Mauri A, Cardani A, Siesky B, Guidoboni G, Harris A. Increased levels of nitric oxide may pathologically affect functional hyperemia in the retina: model and simulation. Posterboard Number 214 -B0245. ARVO Annual Meeting, Baltimore, MD, 2017.
Newman EA. Functional hyperemia and mechanism of neurovascular coupling in the retinal vasculature. J Cereb Blood Flow Metab. 2013;33(11):1685-95. doi: 10.1038/jcbfm.2013.145.
Sala L, et al. An implementation of HDG methods with Feel++. Application to problems with integral boundary condition. In preparation. 2017.
Mauri AG, et al. Neurovascular coupling in the human retina: a multiscale mathematical model. In preparation. 2017.
Sigal I, et al. Finite element modeling of optic nerve head biomechanics. Invest Ophthalmol Vis Sci. 2004;45(12): 4378–4387.
Yan D, et al. Deformation of the lamina cribrosa by elevated intraocular pressure. Br J Ophthalmol. 1994;78(8): 643–648.
Guidoboni G, et al. Intraocular pressure, blood pressure and retinal blood flow autoregulation: a mathematical model to clarify their relationship and clinical relevance. Invest Ophthalmol Vis Sci.
;55(7): 4105–4118.
Williamson T, Harris A. Color Doppler ultrasound imaging of the eye and orbit. Surv Ophthalmol. 1996;40(4): 255–267.